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We extend the jet bundle machinery of gauge theory to the multimomentum 
Hamiltonian formalism. This enables us to manipulate finite-dimensional 
momentum spaces of fields. In the framework of this formalism, time and spatial 
coordinates are regarded on the same footing, and a preliminary (3 + 1) splitting 
of a world manifold is not required. We get the canonical splitting of a multi- 
momentum Hamiltonian form into a connection part and a Hamiltonian density. 

1. I N T R O D U C T I O N  

In  b u n d l e  terms,  ma t t e r  f ields ~b are  r ep re sen t ed  by  sec t ions  o f  a vec to r  
b u n d l e  E - >  X a n d  the i r  Lag rang i an  is def ined  on  the 1-jet m a n i f o l d  j I E  
o f  E by  the m o r p h i s m  

L: J I E - >  A T * X  

L = ~f~o, to = d x ~  ^ . . .  ^ dx~n (1) 

(Saunders ,  1989; Mang ia ro t t i  and  M o d u g n o ,  1991). The  j e t  m a n i f o l d  is 
e n d o w e d  with  a d a p t e d  coord ina t e s ,  

(x  A, yi, y[ )  o j l  ~b = (x  x, qb ' (x ) ,  Oxgai(x)) (2) 

a n d  it p lays  the  role  o f  a f in i t e -d imens iona l  conf igura t ion  space  o f  fields ~b. 
A f in i t e -d imens iona l  m o m e n t u m  space  o f  fields ~b is r ep re sen ted  by  

the  Legendre  m a n i f o l d  

II = ,~ T ' X |  T X  | V* E (3) 
E 
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on which the multimomentum Liouville form 

0 : -p~ dy ~ ̂  to| (4) 

is defined. The manifold (3) is provided with standard coordinates 
(x ~, y~, p~). Given the Lagrangian (1), we have the Legendre morphism 

f_,: f l  E --> II 

(x ~, el, p~) o/~ = (x ~, yi, p~ = ~.~ = 0 ~ )  
(5) 

A multimomentum Hamiltonian form H on H is defined to be an object 
of  the following kind: 

n 

H: I I ~ A  T*E 
h i H = p )  ay  ^ to . -  , y ,  toA =0x / to 

(6) 

where local functions ~ on II obey the coordinate transformation law 

[ OY i OY 'j A ) [ Ox~ \ 
~ ( ' ( x ' ~ , y ' i , p ~ ) = J ~ y , ~ - ~ x x p i + ~ , ,  J = det ~0--~) (7) 

If  X = R, we have the familiar Hamiltonian formalism. 
The multimomentum Hamiltonian formalism (Kohi[, 1973; Krupka, 

1978) has been generalized to degenerate Lagrangian systems (Zakharov, 
1991). To apply this formalism to field theory, we use the notion of a general 
connection on a bundle E: 

F: E ~ j I E  (8) 

As a consequence, there is a canonical splitting 

of the multimomentum Hamiltonian form (6), where F is some connec- 
tion (8). 

" We further assume that all maps are smooth and manifolds are real ,  
Hausdorff, second-countable, finite-dimensional, and connected. Bundles 
are locally trivial and differentiable. Their structure groups are assumed to 
be Lie groups. 

By ^, we denote exterior product of cotangent vectors. The interior 
product (pairing) of tangent vectors with cotangent vectors is denoted by _1. 
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2. B U N D L E S  

By a bundle, we mean a locally trivial fiber bundle 

zr: E ~ B 

whose total space E and base B are manifolds. For the sake of  simplicity, 
we denote a bundle by its total space E. 

We use y and x in order to denote points of  E and B, respectively. 
Given a bundle E and another bundle 

or': E'-~ B' 

a bundle morphism of  E to E '  is defined to be a pair of  manifold morphisms 

�9 : E ~ E ' ,  ~ s :  B-'>B' 

such that 

One says that qb is a bundle morphism over qbs. 
Given a bundle E and a manifold morphism 

f :  B'---> B 

the pullback of  E by f is defined to be the bundle 

f * E  = {(y, x') ~ E x B'; ~r(y) = f (x ' ) }  

with the base B' and projection 

f*(Tr):  (y,x')--',x' 

In particular, each section e of  E yields the pullback section o f f * E :  

f *  e(x') = ( e ( f (x ' )  ), x') 

We provide a bundle E with local bundle coordinates 

(x~,yi),  l_<A_ n = d i m  B, l < _ i < _ l = d i m E - d i m B  

which are compatible with the bundle fibration of  E. In particular, if 

�9 = { U,,, 6,,: "rr- ' (UK) ~ U,, x F }  

is a bundle atlas of  E, coordinates yi on E can be induced by coordinates 
v ~ on a standard fiber F of  the bundle E:  

y i=  v'o ~,, (9) 

In field theory, one is usually concerned with bundles associated with 
a principal bundle. 
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A group bundle is defined to be a bundle E together with canonical 
bundle morphisms which make each fiber Ex = ~--l(x) of  E into a Lie 
group. For instance, a vector bundle E possesses the structure of  an additive 
group bundle. 

A general affine bundle is defined to be the triple (E, E ' ,  r) of  a bundle 
E, a group bundle E '  over B, and a bundle morphism 

r: E x E ' ~  E 

which makes each fiber Ex of E into a general affine space with the associated 
group E'x acting freely and transitively on Ex. 

In particular, if a group bundle is a vector bundle/~,  a general affine 
bundle is called an affine bundle modeled on the vector bund le /~ :  

re: E x E - *  E 
B 

rE: (y, 37)-~ y +37 

A principal bundle P with a structure group G is a general affine 
bundle with respect to the trivial group bundle B x G, where the group G 
acts on P on the right: 

rg: P ~ P g = r ( P , g ) ,  g ~ G  (10) 

Given a principal bundle 

rrp : P -~ B 

with a structure group G, a total space of a P-associated bundle E with a 
standard fiber F is defined to be the quotient ( P x F ) / G  of the product  
P x F  by identification of elements (p, v) and (pg, g - i v )  for all g ~  G. 
A global section e of  E then is determined by an F-valued  equivariant 
function f~ on P such that 

e(Trp(p)) = [P]Ffe(P),  P ~ P 

fe (Pg)  = g--l f e (P) ,  g ~ G 

where [P]F denotes the restriction of  the canonical map 

P •  

to the subset p x F. 
Let (E~, E~, r0  and (E2, EL, r2) be general affine bundles. An affine 

bundle morphism E~ ~ E2 is a pair of  bundle morphisms 

qb: E1 --) E2, 0p': E ~ E L  

such that 

r2 ~ (~ ,  ~ ' )  = �9 ~ rl 
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For instance, let P be a principal bundle with a structure group G. 
Every affine (principal) isomorphism of P (over the identity morphism of 
its base B) is expressed as 

d p p ( p ) = p f ( p ) ,  p e P  
(11) 

f ( p g )  = g - l f ( p ) g ,  g e G 

where f is a G-valued equivariant function on P. 
Given a P-associated bundle E with a standard fiber F, every principal 

isomorphism (11) yields the principal morphism 

dPe: ( P x F ) / G ~ ( d P p ( P ) x F ) / G  (12) 

of  the bundle E. 
Given a principal bundle P and a P-associated bundle E, we say that 

a bundle atlas 

of  P and a bundle atlas 

of E are associated atlases if they are determined by the same family 
{z,(x), x e  U,} of local sections of P, that is, 

z,,(~re(p)) = p(tP~(p)) -1 = p ( ~ ( x ) ) - l l o  

g,~(x)=[z.(x)];~ 1, ~ ( p ) = x e  UK 

Here, 1~ is the unit element of the group G. 
The tangent bundle over a bundle E possesses additional structure, 

which is the vertical subbundle. 
Given the tangent bundle 

"rrM : T M  ~ M 

and the cotangent bundle T * M  over a manifold M, we denote the induced 
bundle coordinates on T M  and T * M  by (x ~, ~x) and (x x, xx), respectively. 
Here, ~x and xx are coordinates on fibers TxM and T * M  with respect to 
holonomic bases {a~} and {dx:~}. Let 

f :  M ~ N  

be a manifold morphism. This yields the linear bundle morphism over f :  

f , :  TM--> T N  

f,: "r'%~--, ~" af~ a 
a x  g 

which is called the tangent morphism to f. 
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Given a bundle E, we have the bundles 

1rE: TE  -> E 

7r,: TE ~ TB 

The induced bundle coordinates on TE are (x ~, y~, ~A, );i). 
The vertical bundle over a bundle E is defined to be the subbundle 

VE = ker 7r, = TE 

The induced bundle coordinates on VE are (x A, y~, 3; ~) 
We have the following exact sequence of  tangent bundles: 

0--> VE ~ TE ~ E X T B - ~ O  (13) 
B 

over E, where 

E x TB  = zr*(TB)  
B 

is the pullback of the tangent bundle TB by 7. For instance, a bundle 
morphism q~ of  a bundle E yields the vertical tangent morphism 

V ~ = O , [ w :  V E R V E '  

of  the vertical bundle VE to VE'.  

The dual exact sequence of  cotangent bundles is 

O--> Tr*( T*B)--> T * E - ~  V*E->O 

Here, V * E  is the vertical cotangent bundle dual to VE and 

H * E  = ,rr*( T * B )  = E x T * B  
B 

is the horizontal cotangent subbundle of  T * E  which consists of  covectors 
whose interior product  with vertical tangent vectors is equal to zero. For 
the sake of simplicity, we denote the horizontal subbundle H * E  by T*B.  

A vector field on E is called a projectable vector field if it is projected 
to a vector field on B. The coordinate expression of  a projectable vector 
field is 

u = u ~ ' ( x ) o , ,  + u'(y)ai 
A projectable vector field on E taking its values in the vertical bundle 

VE is called a vertical vector field. Its coordinate expression reads 

u = ui(y)ai 

Vertical bundles of  most of  the bundles relevant for physics possess a 
simple structure called vertical splitting. 
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A vertical splitting of a bundle E is made up of  a vector bundle E and 
a linear bundle isomorphism over E:  

a: VE-+ E x/~ (14) 
B 

In particular, a trivial vertical splitting of  a bundle E is a vertical splitting 
with a trivial bund le /7  = B x F: 

o~: VE + E x F (15) 

Given the vertical splitting (14), the bundle coordinates (x*, yi) on E 
are called the coordinates adapted to the vertical splitting if the vector fields 

pr2o a oOi: E-+ V E - ~ E  xE-->ff~ 
B 

are constant along fibers of  E. In this case, we can write 

pr2 ~ a o 0i = t i (x)  

where the t i (x )  are bases associated with some local splitting ~ of/~. The 
vertical splitting (14) is called an integrable vertical splitting if there exists 
a bundle coordinate atlas of  E constituted by coordinate charts adapted to 
the vertical splitting. 

For instance, a vector bundle E has a canonical integrable vertical 
splitting: 

VE = E x E (16) 

An affine bundle E modeled on a vector bundle/~ has a canonical integrable 
vertical splitting (14). 

A principal bundle P with a structure group G has a canonical trivial 
vertical splitting (15): 

a: VP -~ P x g 

pr2 o a O O m = J  m 

where g is the left Lie algebra of  the group G and {Jm} is a basis for g. This 
splitting takes place because, by definition, elements of  the left Lie algebra 
g are left-invariant vector fields on G. Given an atlas {z~} of  the bundle P, 
the canonical bundle coordinates on P adapted to a canonical vertical 
splitting are (x x, p=)  

p m ( p ) = ( a ' o O f ) ( p ) = a  m(gp), p~TrT,~(UK) (17) 

where am(g)  are group parameters and the element gv ~ G is determined 
by the relation 

p = z~(=,,(p))g, 
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In the case of bundles, the familiar machinery of •-valued exterior 
forms is extended to tangent-valued forms. 

A tangent-valued form ~b on a manifold M is defined to be a section 
of  the bundle 

A T * M  |  
M 

Its coordinate expression is 

= r 1 7 4  ~, ^ . . .  ^ d x  ~', 

Given a bundle E, one manipulates the following classes of tangent- 
valued forms on E: 

(i) Tangent-valued horizontal forms 

qb: E ~ A T * B |  
E 

a + i 
qb = (~bx , . . . x r (Y )  , a x , . . . ~ , , ( y ) a , ) |  dx~h ^ ' "  �9 ̂ d xx"  

Projectable horizontal forms projected to tangent-valued forms 

(iii) 

4~ = ( 4~, . . . , , (x )a ,~  + d~,,... , , ( y ) a ~ ) |  dx* ,  ^ . .  �9 ̂ dx  ~" 

Vertical-valued horizontal forms 

~b: E ~ A T * B |  
E 

,~ = 4 ~ [ , . . . , , ( y ) a i Q d x * '  A" �9 �9 A dx A" 

A vertical-valued horizontal 1-form is called a soldering form: 

tr  : E ~ T *  B | V E  
E 

(18) 
tr  = t T ~ ( y ) O i |  ~ 

Tangent-valued 0-forms (i.e., vector fields) are known to form a sheaf 
of Lie algebras with respect to the commutation bracket. This algebra 
structure can be generalized to tangent-valued forms if we consider the 
Fr61icher-Nijenhuis (FN) bracket: 

rs  ~ [ ~ ,  o ' ]  = (~,~, . . .  ,~O,,o "'~,~r+, ,~,+, - ( - 1 )  o',x,... ,x,O,,~,~,+, �9 ,,+, 

-rC,,,...~,_,,a~cr,,+,...,,+, ( -1 )  s~ , . . . ,  . . . .  ,,,/,,,,+,...,~,+,) 

x d x * '  ^ �9 �9 �9 ̂  d x * ' + ' |  

a tangent-valued form 0, we can introduce the Nijenhuis Given 
differential 

do: cr~-~ d o ~ r = [ O ,  tr] (19) 
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For instance, if 0 = u is a vector field, we have the Lie derivative 

d,o-= L,o-= (u ~a,Cr~m... ~ -  o-~,... ~O,u" 
U v + so'~,... ~ . . . .  a~. ) dx ~, ^ .  �9 �9 ̂ dx ~| 

Note that the differential (19) can be applied to R-valued forms o'. 

(20) 

3. JET MANIFOLDS 

We here restrict ourselves to first-order and second-order jet manifolds. 
Given a bundle E, the first-order jet manifold J~E of  E is defined to 

be made up of  equivalence classes 

w =j~e, x ~ B 

of  sections e(x) of  E so that e(x) and e'(x) belong to the same class j~e 
if and only if 

e(x) = e'(x), e,l~x. = e~lTxA 

The jet manifold j I E  represents the total space of  the bundles 

E1---(J1E, Trl,B), 7r1: J 1 E g j l x e ~ x ~ B  

E ~  zrol,E), ~rol: J1Eaja~e--)e(x)~E 

Note that the structure of  a smooth finite-dimensional manifold is induced 
on f i E  as on the bundle E ~ 

Given bundle coordinates (x ~, y~) on E, the jet manifold j1E is provided 
with adapted coordinates (2). Adapted coordinate transformations read 

x '~ = O~(x ~') (21a) 

y' i=Oi(x~' ,yJ) (21b) 

y~i = laq~i " aq~i\ ax'~ 
~Oy--- 7 y~ +~x~) oX;X (21c) 

Note that the transformation law (21a) is independent  of  y~ and y~ 
and that the transformation law (21b) does not involve y [ .  It follows that 
adapted coordinates on f i E  also play the role of bundle coordinates on 
J~E regarded both as the bundle E 1 and as the bundle E ~ 

Moreover,  the second term in the transformation law (21c) indicates 
that E ~ is an affine bundle. Namely, there is a canonical bundle 
monomorphism 01 of  f i E  onto an attine subbundle of  the bundle 

T*B |  
E 

It is called the contact map and is given by the coordinate expression 

01 = dx x | dx = dx A | (Ox + y~o,) (22) 
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The bundle E ~ hence is the affine bundle modeled on the vector bundle 

T*B |  ~ E (23) 
E 

Let E and E '  be bundles over B and 

dp: E-.-> E '  

be some bundle morphism over a diffeomorphism dPB of  B. Then, there 
exists a jet prolongation of  a morphism r to the morphism 

jldp: j 1 E  .1 .1 dP ~ 1) ~ f i  E '  ~jxe-~ j ~ ( x ) (  ~ o e o 

For instance, each section e of  E can be regarded as the bundle 
morphism of  the bundle B ~ B into the bundle E over B. Hence, we have 
the jet prolongation of  a section e to the section 

( j l e ) ( x )  = j l e  

of  the bundle E 1. In adapted coordinates,  this prolongation reads 

(x ~, yi, yi ) oja e = (x ~, ei(x) ,  OAei(x) ) 

In Section 6, we shall need the lift 

St: f i  E ~ T I l E  

of  a projectable vector field u on E to a vector field on J~E. The coordinate 
expression Of this lift is 

St(w) : uaOA + uiOi + (O~u i + y~Oju i - yi~Oxu")O ~ 
(24) 

x = ~-(y) = ~h(w), y = ~ol(W) 

By analogy with 1-jet manifolds, higher-order jet manifolds can be 
introduced. Here we are concerned only with the second-order  jet manifold 
JZE of a bundle E. This is made up of  equivalence classes .2 j xe  of  sections 
e(x)  of  E so that e(x)  and e'(x) belong to the same class j~e if  and only if 

j~e =jxe'l ,, e**ITxTB = e**lT~ 

By TTB, we here denote the tangent bundle over the tangent bundle TB. 
The 2-jet manifold j 2 E  is endowed with the adapted  coordinates 

X A, i i i i y ,  y~, ya~, = y~,a), where 

i -2 i y~,(Jxe)  = O~,Oxy (e) 

We can consider the repeated jet manifold 

J l f l E ~ B  
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provided with local coordinates 

A i i i (x , y ,  y•.) Y~, Yo~, 

There are two bundle morphisms over j1E:  

'~1(Ol) : J1J1E -~ j IE ,  i Ya ~ "/7"1(01) = Y~ 

jlTrol : j I j I E ~ j I E ,  i .1 i Yx oj 7rol = Yo~ 

By recalling the affine structure of  the bundle E ~ we find that their 
difference over J1E yields the bundle morphism 

jl~rol-Tq(ol)=sr:  J1J1E ~ T * B |  
E 

(x  "~, y', .2,~ |  o ~== (x,~, Y,i Yo,~i _ y,) i  

The kernel o f  ~ is an affine subbundle . ]2E c J l f l E  over  jIE, which is 
characterized by the condition 

Y~A =Y~ 
"" A i " i The adapted coordinates on J2E are (x , y ,  Y~, Yx.), where, in contrast 

with coordinates on J2E, 

Y ~ . # Y ~ x  

Hence, there exist the following affine bundle monomorphisms  over J~E: 

JZ E -...> .IZ E --> J1J1E (25) 

and there is an affine splitting of -12E over j I E :  

J2E = j 2 E  T*B VE 

4. GENERAL CONNECTIONS 

In general, a connection on a bundle E must determine the lift of  a 
tangent vector to B at a point x ~ B to tangent vectors to E at each point 
y ~ E projected to x. In other words, a connection F on a bundle E can be 
viewed as a morphism 

F: E xTB-> TE (26) 
B 

One can introduce a connection in various equivalent ways. In the 
f ramework of  jet  formalism, we do it as follows. 
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Given a bundle E, a connection F on E is defined to be a global section 
(8) of  the bundle E ~ Its coordinate expression is 

( X A  i i A i y ,  y~) o r = (x , y ,  r~,(y)) 

Let F be a connection on a bundle E and �9 be a bundle isomorphism. 
T h e n ,  

F , = j l ~ o F o ~  -1 

is a connection on E. In particular, if  @ is a bundle isomorphism over Id B, 
we have the coordinate expression 

(x '~, y", yi ')o F '= (x", y", (a;,r + I ' {o j r  o 0 -1) 

By means of  the contact map 0~ of  (22), a connection F can be viewed 
as a projectable tangent-valued horizontal form 

01oF: E--> T * B |  
B 

We denote this form by the same symbol F. Its coordinate expression is 

r = dx x | (0h + F~(y)0,) 

The form F determines the morphism (26): 

F: (y,O,)-->(0x+F~(y)O,)~ TyE 

which yields the splitting of the exact sequence (13). 
A connection F defines the bundle morphism 

D: f i e  ~w-.-> w - F ( ~ m ( w ) ) ~  T * B |  
E 

of  the affine bundle E ~ into the vector bundle (23). We call this morphism 
a covariant differential. Its coordinate expression is 

D ~  i i [y~ - FA(y)] dx ~ | (27) 

To describe the totality of  connections on a bundle E, one can use the 
following fact. 

Proposition. Let F be a connection and or be some soldering form (18) 
on E. Then, their affine sum 

F ' =  F+( r :  E-->f lE 

r ' =  dx* | [0;~ + r~(y)o, + o'~(y)O,] 

over E is a connection on E. Let F and F'  be connections on E. Then, their 
affine difference over E is a soldering form. 
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The general approach to connections is suitable for formulating the 
classical concept of  a principal connection. This is a connection A on a 
principal bundle P with a structure group G which obeys certain symmetries 
by the action of  G on P and j1p. Namely, a principal connection is a 
section of  the bundle pOX which is a G-equivariant bundle morphism such 
that the following diagram is commutative for each morphism (10): 

p A > j I p  

p A ~ j 1 p  

Given an atlas ~ P  and associated canonical coordinates (17) on P, we have 

A = dx~| +A'~(p)Om) 

A • ( x  a, pm)Om = (rg).(A"~(x ~, 0)0,1) = A~'(x a, 0) ad g-l(am) 
In the case of  a principal bundle P, the exact sequence (13) implies the 
exact sequence 

0--> V~ , TOP--> TB--> O 

where 

V ~  = VP/  G, TOP = TP/  G 

denote the quotients of  VP and TP by the canonical action (10) of G on 
P. A principal connection A defines the splitting of  this sequence. 

Let E be a bundle associated with the principal bundle P. A principal 
connection A on P yields an associated principal connection on E. With 
respect to associated atlases ~ P  of  P and �9 of  E, a connection A on E 
takes the coordinate form 

A](y)  " i = Ax (x , 0) (28) = A x  (x)Im(y ), A T ( x )  m 

By Ira, we here denote generators of  the group G acting on a standard fiber 
F of  E on the left. 

5. GEOMETRIC THEORY OF CLASSICAL FIELDS 

Let us examine matter fields ~b identified with global sections of a 
vector bundle 

(E,~-,X,F,G) 

over a world manifold X. This bundle is associated with a principal bundle 
P. We call E a matter bundle. 
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We further assume that X is an n-dimensional manifold endowed with 
a fiber metric 

2 

g: X-~  V T X  

in the cotangent bundle T * X  and the dual fiber metric in TX, which we 
denote by the same symbol. 

Given coordinates (v ~) on the standard fiber F of  E, a bundle atlas 
yields linear bundle coordinates (x x, yi), (9), on the vector bundle E. These 
coordinates are adapted to the canonical vertical splitting (16). Being 
endowed with this splitting, the vertical bundle VE is associated with the 
principal bundle P. 

Let A be a principal connection on the principal bundle P. Given the 
associated principal connection A on E, the covariant differential (27) of  
field functions &K reads 

p, m D~b,, = dx |  

where A'~(x) are coefficients of  the associated principal connection (28) 
on E. 

Since principal connections on a principal bundle P with a structure 
group G are represented by G-equivariant sections of  the jet bundle p01, 
there is bijeetive correspondence between principal connections A on P 
and global sections A c of  the affine bundle 

C = P ~  = (JIp/G--> P / G  = X )  (29) 

modeled on the vector bundle 

= T * X  | v G p  

We call C a connection bundle. 
Sections of  the bundle V a P  are vertical vector fields on P invariant 

under the canonical action (10) of  G on P on the right. This bundle is 
associated with the principal bundle P. Its standard fiber is the right Lie 
algebra ~ of right-invadant vector fields on (3. The structure group G acts 
on this standard fiber by the adjoint representation. 

Given an atlas {z~} of P, the bundle VGp is provided with associated 
bundle coordinates (x ~, k m) such that right-invariant vertical vector fields 

u(p)  = pm(zK(x)g)O ~ =/F~(z~ (x)) ad g-l(O,.) 

on P are represented by sections of  the bundle vGp: 

u ~ (x )  = k m ( x ) I m  = p m ( z ~ ( x )  )I , .  
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where {Im} is a basis for the right Lie algebra ~. The corresponding bundle 
coordinates on C are (x n, k~).  A section A c of  the bundle C then has the 
coordinate expression 

m m k n o A c = A n (x) 

In gauge theory, sections A c are treated as gauge potentials. 
Recalling the contact map (22), we may represent a section of  the affine 

bundle (29) by the form 

AC: X ~  T * X |  

A c = dx"|  - A~(x)Im] 

The finite-dimensional configuration space of the matter fields ~b is the 
jet manifold f iE .  

The configuration space of  the gauge fields is the jet manifold t iC .  
The affine bundle C ~ admits the canonical splitting 

J1C = C+ OcC_=(J2p/G)Gc (~k T * X |  V ~ P )  (30) 

where C§ is the affine bundle modeled on the vector bundle 

2 

C+ = V T ' X |  VCp (31) 

(Mangiarotti and Modugno, 1985). Local coordinates 

m m m __ n m m m m m rn  n l (x n, k . ,  s~.a, Fan) - (x , kn ,  kna + kan, kna - k~n - c.lka k~.) (32) 

on j I c  are adapted both to the submanifold C§ and to the submanifold 

C_ = C A T ' X |  gCp  

Here, c,'~ are the structure constants of  the group G. 

Remark. To get the splitting (30), one can use the monomorphisms 
(25) and the canonical isomorphism of  .12P/G to t iC .  

From the splitting (30), one obtains the fundamental form 

2 

F: J IC  ~ A T * X |  V~P 
(33) 

F 1 m ~ m . l - ~(kna - kan - c,tka k n) dx a ̂  dx n | 

If A is a principal connection on P, its curvature is given by 

F A = F o f A  c 
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The gauge-invariant Lagrangians of gauge fields are known to be 
constituted only by the form (33), whereas the form 

S: j I  c -~ c+ 

is defined by gauge condition. 
Given configuration spaces f i e  and t i c  of matter fields and gauge 

potentials, we can consider the first-order Lagrangian formalism. 

6. LAGRANGIAN FORMALISM 

A first-order Lagrangian is defined to be a morphism (1). We call ~ a 
Lagrangian density. 

The following objects are usually associated with a Lagrangian. 
1. The Legendre morphism. One calls the bundle (3) over E the 

Legendre bundle. This is provided with the standard coordinates: 

7to ~rrI: I I -~E-~X  
(34) 

(x x, yi, p~)~ (x x, y i )~  (x x) 

The Legendre morphism (5) is defined to be the fiber derivative of L. 
2. The Poincar6-Cartan form: 

| = 7r~ dy'A toa --(Tr~y~ - ~ ) t o  (35) 

3. The Euler-Lagrange operator: 

~(L): j2E ~ A T*X  A V*E 

~(L) = ( a i ~ -  dxTr~) dy i A to = t$i~ dy i A to 

where by d~ and ~i we denote total derivatives and variation derivatives, 

i i ~ A d~ =O~ + y~Oi+ y~Oi , t~i=c31-d,xc3i  

Given a Lagrangian L and the jet prolongation j le  of a section e of 
/3, the Euler-Lagrange equations read 

(j2e)*[u d ~(L)] = 0 (36) 

(j2e).[ 8,Ze]=OZe( e) . aLe(e) 
c3ei Ox Oel----~ 0 (37) 

for every vertical vector field u on E. 
In field theory, a Lagrangian is usually required to be gauge invariant. 
There are two main types of gauge transformations. These are atlas 

transformations and principal morphisms. 
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Here, we consider gauge transformations associated with internal 
symmetries which do not concern the tangent bundle TX over a base 
manifold X. 

In field theory, atlas transformations are treated as transformations of  
reference frames. They do not act on sections ~b(x) of  the bundle E, but 
change their representation by field functions ~b~(x). 

Principal morphisms ~E of  E are bundle morphisms (12) induced by 
principal isomorphisms (11) of  the principal bundle P over the identity 
morphism of  the base X. In contrast with atlas transformations, principal 
morphisms ~ e  alter sections of  E. 

The necessary condition of  gauge invariance of a Lagrangian L consists 
in bringing L into zero by generators of  infinitesimal principal morphisms. 
These generators are associated with certain vertical vector fields u s on the 
bundle E. We call such a vector field a principal vertical vector field. 

In order to define gauge generators acting on a Lagrangian, we can 
construct the lift (24) of  corresponding principal vector fields: 

Us = i i j i x UsOi "1- ( 0 x U g  at- YAOjUg) 0 i 

These generators act on R-valued forms and tangent-valued forms on j I E  
as Lie derivatives (20) given by the FN bracket: 

L~ = d~.~ = [a s, ~] 
In particular, gauge generators act on a Lagrangian L by the rule 

=(usa i+(axus  + : i La~(L) =[t~s, L] i i yxOjus)O,)o.~ w (38) 

I f  ~ is gauge invariant, we have 

L%~ = 0 

for all principal vertical vector fields u s. This equality makes sense of  some 
conservation laws and provides us with certain conditions on the constitution 
of a gauge-invariant Lagrangian. 

In the case of  unbroken internal symmetries, the total Lagrangian L 
of  the gauge theory is defined on the configuration space 

J I E  X J IC  
x 

Let us provide this configuration space with the condensed coordinates 
(x~,, qa, qA), qA = (y~, k'~) 

and calculate the Lie derivative (38) of  the total Lagrangian L: 

LaL  = [usA 8A~.~_ dx(ugAo A~) ] ( . o A  = 0 (39) 

The local principal vertical field u~ on the bundle E x x C takes the form 

u s = [u~(qB)a  m(x~) + u~X(qB)0xa "(x~')]0a 

= a"(x")I,,,jyJO, +[O,~a~(x") + c,,tk,~a"' " "'(x')]O,,,x 
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where a '~ (x ~') are arbitrary local functions on X. Substituting this expression 
into equality (39), one reproduces the familiar No&her identities for a 
gauge-invariant Lagrangian: 

A A /x u,,,~ALe + d, A ur,,O A~) = 0 
A A  A A  tz A h 

A A  I ~ A l x  k 

The total Lagrangian of the gauge theory is given by the sum 

L = L(m~+ L(A) 

of  the matter field Lagrangian L(r.~ and the Lagrangian L(A) of the gauge 
potentials. 

We give an example of  F-valued scalar matter fields. Let a E be a 
G-invariant metric in F and F a connection on E. The familiar scalar field 
Lagrangian L~m~ and the corresponding Euler-Lagrange operator read 

1 ,~v E i i j Lo.) = ~[g a u (Y,, - F . ( y ) ) ( y ~ -  r~(y))  - m2a~y~yJ]lgll/2to 

~ ( L ) =  ~ 2 i .~ , --alk[m y + g  (y.~,-y~ojr'v(y))]lglX/2to| k 

F/~(y) = k'~t ia, J (40) . . . . , ~ .  , g = det g ~  

The conventional Yang-Mills Lagrangian L(A~ of  gauge potentials on 
the jet manifold t i C  provided with coordinates (32) is given by the 
expression 

1 ,.,c , , . . x t ~ . ~ v l Z ,  m l~,n I . I 1 / 2  , (41) 
LA=4e--5..,..s 6 - - x ~ - - ~ v j s j  w 

where a ~ is the adjoint invariant metric in the Lie algebra fi and e 2 is the 
coupling constant. 

7 .  M U L T I M O M E N T U M  H A M I L T O N I A N  F O R M A L I S M  

Given a bundle E, let us consider the Legendre bundle II of (3) and 
the commutative diagram 

E 
r . / \ %  

JI E~ ~ 2 I I  

where So is the global zero section of  the bundle II and �9 is a bundle 
morphism of  II to f i E  over E. Then, 

Fo=qbo  So: E ~ J 1 E  
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is a connection on E associated with ~.  We call �9 a momentum morphism. 
A momentum morphism can be canonically identified with a vector-valued 
horizontal 1-form 

01 o r II ---> T * X  | TE 

on II, which we denote by the same symbol ~.  In standard coordinates 
(34) on l-I, we have 

r = dx ~ | (Oh + Og~(x ~', y~, p~)O,) 

r.(y)=dx~| ' ~ ' +qb~(x ,y ,0)0~)  

We use p to denote elements of  II. By II 1, we further denote the bundle II ~ X. 
Given the Legendre bundle II, there is a canonical inclusion 

- -  / ~  n + l  
II - T* X | T X  | V* E ~ /~ T* E | T X  

and so there is a canonical mult imomentum Liouville form (4) on H. 
For each momentum morphism r  we then can define the associated 

mult imomentum Hamiltonian form 
n 

H .  =CI,_J O: I I -~A T*E 
i (42) H .  = p )  dy  i ^ o)~ - p ~  ~ o ~  

Given the Legendre manifold II, a mult imomentum Hamiltonian form 
H on II is defined by expression (6). Its transformation law (7) is derived 
from the following coordinate transformation rules: 

x ~ ~ x'~(xg), 

,A OX'h OY i p~, 
pj = J ~ x ~ O y  q 

, = j - l ~ ,  

yi ..~ y , i (x ,  ' y j) 
rj 

dy'J = ~  dxA + ~  dy ' 
ox oy 

= j - i  Ox~ 
t~ ~xr~ W. 

(43) 

In particular, as it follows from the transformation law (7), the 
difference of  two multimomentum Hamiltonian forms 

H - H ' = ( ~ ~  1-I~A T * X  

is an exterior horizontal form on II. 
Given a multimomentum Hamiltonian form H on II, one can define 

the associated momentum morphism/-)  and the associated connection FH 
on E: 

( x  ~, i ; o o ~ , ~ )  Y, Y~) /~ = (x a, y', 

= d x ~ |  ~, y ' ,  pf)o;) 
y ,  0)0~) 
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We can also construct the associated multimomentum Hamiltonian 
form 

Hr=F_] O 
(44) 

Hr =p~ dyt A oJ~ -p~F~(y)co 

for a connection F on E. Such a mult imomentum Hamiltonian form has 
the feature that, if Hr is the associated momentum map and Hgtr is the 
associated multimomentum Hamiltonian form (42), then 

H~ r = / d r  

Conversely, if a mult imomentum Hamiltonian form H satisfies condition 

H f t = H  

this is the form (44) for some connection F on E. 
Given a mult imomentum Hamiltonian form H, there is a canonical 

splitting 

H =p~ dyiA to~ -p~rH~(y) to  - ~ (p ) to  

where 

~ o , = H r - H :  II-->/~ T * X  

is an exterior horizontal n-form on II. We call ~ a Hamiltonian density. 
Moreover, given a connection F on E and an associated multimomentum 
Hamiltonian form (44), each multimomentum Hamiltonian form H on II 
can be written as 

H = Hr - ~to (45) 

where ~ is some Hamiltonian density. In particular, 

F~ = F + o "  

where or is some soldering form. 
If  H is a multimomentum Hamiltonian form (6) and r is a section of  

the bundle rl  ~, the Hamiltonian equations for a section r take the form 

r*(c _J dH)  = 0 (46) 

for each vertical vector field c on the bundle H I. In standard coordinates, 
these equations are given by the expressions 

O~r~ = - 0 ~  (47a) 

O~r ~ = 0 ~  (47b) 
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In view of  relation (45), we can rewrite these equations in 

=Ot e 
where D,  are covariant derivatives corresponding to the connection F on 
the bundle 1I 1 which is induced by the connection F on E and the trivial 
connection on TX. In adapted coordinates (x*, yg, p~', y~, p~)  o n  JlI'I1, we 
have 

P~(p) = --oiFJ(y)p~ 

To construct F, one can use the vertical tangent morphism 

VF: VE -~ VJIE 

and the canonical isomorphism 

fl : VJ1E -~ J1VE 

Then, the connection F is defined to be a connection on V*E which is dual 
to the connection 

fl o VF: VE -~ TE -~ VJIE ~ j 1 VE  

on VE. If  one uses covariant derivatives D~ corresponding to a total 
connection on II 1, the Hamiltonian equations read 

T A p~ A DA ri --2~-~xri = ai~ 

DTr, =cgt ~ 

where f~ is the torsion of a connection on TX and T*X. 
Now we examine mulfimomentum Hamiltonian forms associated with 

Lagrangians. 
Let L be a Lagrangian (1) on J1E. For each momentum morphism ~,  

we can define a multimomentum Hamiltonian form 

HL~,= H .  + Lo dp = Pt dy' ^ oax -(ptdP• - ~ ) w  (48) 

By Q = L(J IE) ,  we denote the image of  a Legendre morphism/~ associated 
with the Lagrangian L. We say that a momentum morphism qb and a 
Hamiltonian form (48) are associated with the Lagrangian L if 

s o (I)[Q ----- Id Q (49) 
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and if the morphism /qL~ associated with the Hamiltonian form (48) 
coincides with qb, that is, 

k I i [p~ - 0~LC(x j, y~', e~ ~,(p))]O~(p) = 0 

On Q, this condition is the corollary of condition (49). 
In particular, if/~ is a diffeomorphism, there exists the unique morphism 

^ 1 qb=L-  

associated to L, and the multimomentum Hamiltonian form (48) is induced 
by a Poincar6-Cartan form (35): 

HL,~ = HL = ( /~- ' ) '0  

HL(p) =p~ dy' ^tox - [p~y~(p ) -  ~ ( x  j, y~', y~(p))] 

pXi = f r f  = Of ,~ (  x j, y~', y~) 

We further restrict our consideration to almost regular Lagrangians for 
which/A,-l(p), p ~ Q, is a connected submanifold of f iE. 

Proposition 1. Given an almost regular Lagrangian L, the Poincar6- 
Cartan form O defines uniquely the form 

t l  

HL: Q ~ / ~  T*E 

such that O = s 

Outline of Proof. Since /~(w)=p, we have x �9 ri = p~ in expression (35). 
Hence, for any curve 

A: (0, 1)'->fiE 

the formal derivative 

d 
e( , l ( t ) )  

is equal to zero if h lies in /~-~(p). Thus, O(w) does not depend on the 
choice of w s/.~-~(p). 

Note that the set Q is analogous to a primary constraint manifold in 
the conventional Hamiltonian formalism. 

It follows from Proposition 1 and condition (49) that, if the form (48) 
is associated with a Lagrangian L, then 

H,.* lo = H,. 

A degenerate almost regular Lagrangian is exemplified by the zero 
Lagrangian L = 0. In this case, Q = 0 and multimomentum Hamiltonian 
forms (48) associated with this Lagrangian are exhausted by forms (44). 
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The following theorems relate the multimomentum Hamiltonian for- 
malism and the Lagrangian formalism in the case of almost regular 
Lagrangians. 

Proposition 2. Let r be a section of the bundle rl 1. If r takes its values 
in Q and satisfies Hamiltonian equations (46) for some HL~, associated with 
L, then 

r = L ( j l e )  

for some section e of E which satisfies the Euler-Lagrange equations (36). 

Proposition 3. Let a section e of the bundle E be a solution of the 
Euler-Lagrange equations (36) and qb be the momentum morphism associ- 
ated with L such that 

( ~  o f_,)jl e =j~e (50) 

Then, 

r = f~(j 'e)  

satisfies the Hamiltonian equations (46) with H---HL~,. 

Outline o f  Proof. Equation (47a) can be easily derived from equations 
(37), and equation (47b) results from condition (50). 

Remark. If the degeneracy rank of L is constant on H, we can always 
construct a local morphism qb satisfying the conditions of Proposition 3. 
Let (V; x x, yi, p~) be a chart of Q. In view of the constant degeneracy 
condition, we can select the maximal subset {fi~} of coordinates {y~} for 
which the equations 

_;~ _ O_~ 

P' - oy~ 

can be resolved for yx.-i" 

- i  " " yh =y~(x ~',yJ, -- j p~,_y.) (51) 

where y/~ are the remaining coordinates. Since {y~} is the maximal subset 
of resolvable coordinates, after substituting (51) into the equation 

- - - - : -  

e~' = oy_ ; 

we obtain 

p~ =p~(x*', y J, ff~') 
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Let e = (x ~, y~(x)) be a section of E. Then, the local morphism 

V ~ (x x, y', p~) ~ (x x, yi, p~(x ~, y.i, py,  O~y.i(x)), y_~ = O~y') 

satisfies the conditions of  Proposition 3. 

8. CONSERVATION LAW 

To clarify the physical meaning of  a mul t imomentum Hamil tonian 
form, we consider the following conservation law. 

Let F be a connection on the bundle E, e(x) be a section of  E, and r 
be a vector field on X. Given a Lagrangian L, coefficients of  the form 

r~ T~(e)t% = - ( f  e)*(rr d O) 
= r~{cr~[a~e i i - r . ( e ) ]  - &~ 8~ }oJ~ 

r = ~ ( x ) O ~ ,  ~r = �9 J r = ~ ( x ) [ 0 ~  + r ~ ( y ) 0 , ]  

coincide with components  of  the canonical energy-momentum tensor of  e 
projected onto r. Let e be a solution of  the Euler-Lagrange equations (36). 
I f  the Lie derivative 

(j2e)*[~r,  L] = (j2e)*[da(rr 2 | + ~.A(F ~ -y[)8~L] 

vanishes, then the following energy-momentum conservation law holds: 

O,[r"T~(e)] = 0 

In virtue of  the splitting (45) and Proposition 2, one can bring this conserva- 
tion law to the form 

z~T~(r) = - r * ( v r  J HL), r = s  

Ox{[7"r)(x) - rXrr  + T"~} = 0 

For instance, if X = R, we have the familiar energy conservation law 

d - 
- - N = 0  
dt 

9. C A N O N I C A L  T R A N S F O R M A T I O N S  

By analogy with the familiar Hamil tonian formalism, let us consider 
canonical t ransformations of  a mul t imomentum Hamil tonian system. They 
are defined to be transformations of  bundle coordinates on the bundle H 1 
which keep the form of the Hamil tonian equations. We have treated the 
particular case (43) of  canonical transformations.  These are transformations 
of  standard coordinates on 1~ which are bundle coordinates on H 1 compat-  
ible with the fibration (34). As a consequence, we have obtained the 
canonical splitting (45). 
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Now, let us consider transformations of  bundle coordinates o n  I I  1 of  
the following type: 

x~ ~ x ~, y, ~ y,i(yj, p~), p~ ~ p~(yJ, p~) (52) 

These fail to preserve the fibration (34). 
Let H be a multimomentum Hamiltonian form (6). We require that, 

for any local solution (yi(x), p~(x)) of  Hamiltonian equations associated 
with H, the local functions 

y"(X) = y ' i (yJ(x) ,  p~'(x)) 

plX(x) =p~X(yJ(x), p?(x)) 

be solutions of  the Hamiltonian equations associated with the multimomen- 
turn Hamiltonian form 

H' = p~ dy " ^ to~ - ~ ( x  ~, y,(yO, p~),  p~(y,J, p~)  )to 

Remark. This does not imply the equality 

p;~ dyi^ to x =p~X dy,i^ tox 

For instance, multimomentum Hamiltonian forms which differ from each 
other in an exact n-form result in the same Hamiltonian equations. 

We can write 

,i ,i Oy, i  Oy  '~ O ~  
�9 Oy . ,~ , Oy  . k = ~P~ O~pO~ .~ 

Oxy" = Op----~k Oxpk "t" 0 7  ox y c3y k Op~ 

OY"oap~+OY'ik[Oa~ Oy 0 0 ~  Opj~'~ 
=Op~ oy _ ~  Op~ ~ Opl ~ Op~J 

In contrast with derivatives Oxy k, derivatives Oxp~ are not defined by Hamil- 
tonian equations if n > 1. In order to get Hamiltonian equations for y", one 
therefore must assume that, in expression (52), y "  is independent of  p}" 
and that 

Oy 'k Op'/" . i 
Oy k c3p~ = ~ A ~ j  

This takes place only if the transformations (52) are reduced to the transfor- 
mations (43). It follows that, if  n > 1, the transformations (43) of  standard 
coordinates on the Legendre bundle II exhaust canonical transformations 
of  a multimomentum Hamiltonian system. 

By canonical maps, we call bundle morphisms of  the bundle II ~ which 
transform each solution of Hamiltonian equations into a solution. We restrict 
ourselves here to canonical maps over the identity morphism of  X. In 
standard coordinates on the bundle YI ~, these canonical maps must take 
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locally the form of the transformations (43) where x '~ = x '~. It follows that 
canonical maps are bundle morphisms of  II represented by bundle morph- 
isms of  the vertical contangent bundle V * E  which are induced by bundle 
morphisms of  the bundle E. 

Let us consider mult imomentum Hamiltonian forms associated with 
an almost regular Lagrangian. By a gauge freedom transformation, we 
call a canonical map which transforms a multimomentum Hamiltonian 
form associated with L to a mult imomentum Hamiltonian form associ- 
ated with the same Lagrangian L. We have the following corollaries of 
Propositions 1-3. 

(i) The induced multimomentum Hamiltonian form HL on the image 
Q of  the Legendre morphism is invariant under gauge freedom transforma- 
tions. Moreover, in virtue of the splitting (45), the term Hr  of  (44) and the 
Hamiltonian density ~e, each taken separately, must be invariant under 
gauge freedom transformations. 

(ii) Gauge freedom transformations bring the Legendre images/~(jl  e) 
of  local solutions e of the Euler-Lagrange equations into each other. Gauge 
freedom transformations thereby make sense of  the transformations of  
physical equivalence. 

10. M U L T I M O M E N T U M  HAMILTONIANS OF GAUGE THEORY 

In gauge theory, principal morphisms of a bundle E associated with 
some principal bundle P induce canonical maps of  the Legendre manifold 
II (we call them the gauge maps). To construct a mult imomentum Hamil- 
tonian formalism, let us require that the bundle E be endowed with an 
associated principal connection F and that a Hamiltonian density ~ in a 
mult imomentum Hamiltonian form be invariant under gauge maps. 

In the case of  matter fields, we have a vector bundle E and a canonical 
vertical splitting 

V * E  = E x E* 

It follows that a Hamiltonian density can be constructed as a scalar function 
under linear gauge morphisms of  bundles E and E*. For instance, keeping 
the notations of  Section 6, let us consider scalar matter fields. Its multi- 
momentum Hamiltonian form reads 

H(,,) = Hr  - ~(w = (p~ dy'  -p~rk(y)to) 
1 /j ~ ~  ~ v  2 E i j 1 / 2  

- ~ ( a E g ~ p ,  pj + m  a o y y  )[g] to (53) 

where a~ is the fiber metric in E* dual to a e and 

p = p t g W  2 
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This multimomentum Hamiltonian form is associated with the Lagrangian 
(40). The Hamiltonian density ~ in expression (53) is invariant under gauge 
maps. To construct a gauge-invariant multimomentum Hamiltonian form, 
however, one must add a multimomentum Hamiltonian form for principal 
connections and regard these connections as dynamic variables. In this 
case, gauge maps become gauge freedom transformations. Moreover, local 
gauge maps exhaust local gauge freedom transformations. 

Given a bundle C, (29), of principal connections, we have the corre- 
sponding Legendre manifold 

17 T ' X |  T X  | V* C 
C 

= A T ' X |  T X  | [C x ( T ' X |  VCP)] * 
C 

where we use the vertical splitting 

VC = C x C; = (2 x ( T ' X |  V c  P ) 

We provide II with standard coordinates 

(x ' ,  k~', p~A) 

o r  

m _ 1[ ~/.~A ../_ ~ A g  h p~X] _ I [ ~ A  

which are compatible with the splitting (54). 
For the standard Yang-Mills Lagrangian L(A) of (41), the Legendre 

map reads 

^ _/~ L(A~: J 1 C ~ Q -  T * X |  
(55) p ~ X ] = - e ~ c  .~,'~-~r;~ I.I1/2 p(~')-- 

The multimomentum Hamiltonian form associated with the Lagrangian 
(41) reads 

Hs = p~a dk'~ ^ oJ. 

E 2 
1 tzA m m ~ n ~ l  1 ran -/xA - ~  11/2 -~Pm [S.x(x)--c.tKaK.J~O--'-~ ac  g~,~ga~p~ p .  g ~o (56) 
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where S(x)  is an arbitrary section of  the aftine bundle C§ and 

F C  1 m rn n I = ~[S~(x)  - c.tk~k~] 

is a connection on C. Thus, mult imomentum Hamiltonian forms associated 
with the Lagrangian (41) differ from each other by a connection Fc.  

Remark. Over C x f l C ,  there is canonical splitting of a connection 
on C: 

F C  1 m m n I m =-~(s.~ - c.tka k . )  + tr~.(x) 

where tr(x) is some section of the bundle (31). 
For local sections (k"~(x), p~X(x)), the Hamiltonian equations associ- 

ated with the multimomentum Hamiltonian form (56) read 

0 ~  1 mvl  r x~ 
a~P~(x )= ok,, 2 c r . ~ t p , .  - p ~ )  

O ~  1 E 2 
- c . t k x k ~ ) - - ~  a~ g~,,,gx~P. oAk~(x) O p ~ , - -  ( S ' ~ ( x ) -  ~ " ' . . . .  

On the image of  the Legendre morphism (55), we have 

Hslo = IlL = p ~ l  dk'~ ^ to. +1 p~Xlc~k~k~to 
2 

E 2 
- - - -  r n n ~  ~ ~[p .A]  .[~/311M1/2 �9 

4 ,,G , ~ t * v , S A l ~ l F r n  Fn 1,51 t.u 

Dxpt"X](x) = 0 

m Oxk~ + O.k'~ = - S . x (x )  

The last equation represents a gauge condition. 
We thus can directly formulate gauge theory in the framework of  the 

mult imomentum Hamittonian formalism. 
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